
NO-Rt&S "5 NEED RAO RRTIOHRLE FOR THE SOFTHRIE TECHNOLOGY FOR 1/1
MAPTRSLE RELIABLE SYS.. (U) INSTITUTE FOR DEFENSE
MWILSES RLEXRNORIN YR S T REDWINE ET Nt. SEP 35

WNCLRSSIFXEO IOR--1072 IWRH-5-29683 N0R933-94-C-S631 F/O 12/5 ML

EEEEEEEEEEEEEE
EEEEEEEEEEEEEEl
Eu...ommmm

1 2II

l/IIIIN I./ /11
-I.l

.44

.O4

S
, P V ~ 4 s ~ 5

J~

1%1 TWW V. W

UNCLj$S:FIFD /'Copy t of31 copies

Lfl

Lr)
00 IDA PAPER P-1872 -

NEED AND RATIONALE FOR
'HE SOFTWARE TECHNOLOGY FOR ADAPTABLE

RELIABLE SYSTEMS (STARS) PROGRAM

Samuel T. Redwine, Jr. -,

Sarah H. Nash

DTIO
OCT 0 9 1987ED

September 1985 '.-
eD

Prepared for

Office of the Under Secretary of Defense for Research and Engineering

DISTELTBU'IONSTATEMENT A
Approved for public releasel

Distribution Unlimited

INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street, Alexandria, VA 22311

UNCLASSIFIED IDA Log No. HO 85-29693

DEF1NMONS
IDA PMush lbW MsIOWs de tol fes re t e feels t Wkr.

Report
RepealS or he AMet OWNulsb ad OeW oushuly Isede predide IDA pMubls.

811180110 majo prapa, wr (b) sarge las dl ulpla uuer to he Euseeliw
WMWseb So Caqua mSOWe &A PubWs W (C) gsue. hIsee OW hews W~ui GOOeId
Womllahs. IDA RPW% e - ewls ky dsisd pan*l of use"toh oawn Nae Mhig
qul aid reoam hlefs pmblemede, id Syoym releedby bs eel alIOA.

Papers
Pap. eamipadeu elbey rsseld W wa OW sbylas. They mumalss

wrkeee spapa. hi pmllemmdmel journals.m

MeMeruiduM Reoets
IDA MwAnmoei Repeal w ma S na mmilam alo e epom m orh tsoyah

aelws to mubs maiabl pInIsery ad hilsWN Mails d4 wmlye or 54 s
pup d 1 -s Iie idllei m *A hsuis .. y mamalma a"d 0ma-
eaht or hi oft a resed al seslresa, msip. or baleps ora dl dsweleped In
heon a of elum Rels PAl Melomaism Reet - Ismld I heir cmW
od IiAded m.

The resl at IDA verb am alm s awyad by a I I -gs aidom~al semeraud o ias.
aid ether desimie by he speee, whom6 apppe.

The verW reetd hiow 1 thist t D demeews a ahd drma dmA ad ~ef &Wanh

YNpapo has bem rwlwed by IDA h to M I0N t mlE high * @1euea eaihs 11

:f- p-

(C~nINTY CIASS0CATION B~THMILTAG

REPORT DOCUMENTATION PAGE

I&. REPORT SECURITY CLASSIFIC.ATION lb. RESRiCliVE MARKINGS
Unclassified None

2s. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIIUTSONIAVALAIILITY OF REPORT
DD Form I5 Dd 1 Ober 1983 Public release/unlimited distribution.

2b. OECLASSIFICATION /DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER($) S. MONITORING ORGANIZATION REPORT NUMIER(S)

IDA Paper P-1872_.

6a. NAME OF PERFORMING ORGANZATION Sb OFFICE SYMIOL 7a. NAME OF MONITORING ORGANIZATION

Institute for Defense Analyses (If l€l) DoD-IDA Management Office

bc. ADDRESS (City. State. and ZIP Code) 7b. ADDRESS (Oty, Sta e, and Z Code)

1801 N. Beauregard Street 1801 N. Beauregard Street

Alexandria, VA 22311 Alexandria, VA 22311

ft. NAME OF FUNDINGISPONSORING 8b. OFFICE SYMIOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

OUSDRE (R&AT) STARS Joint P.O. MDA 903 84 C 0031

Sc. ADDRESS (City. Sftt., and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

1211 Fern Street PROGRAM PROJECT TASK IWORK UNIT

Arlington, VA 22202 NO N.Noa''

11. TITLE ftiche Secufty GQmicabvio)

Need and Rationale for the Software Technology for Adaptable, Reliable Systems (STARS)
Program (U)

12. PERSONAL AUTHOR(S).
Samuel T. Redwine, Sarah H. Nash

13s. TYPE OF REPORT 13b. TIME COVERED 14. DATE OP REPORT (Year. MowkA Day) S. PAGE COUNT
FINAL FROM TO September 1985 35

I. SUPPLEMENTARY NOTATION

I?. COSAT7 CODES |1. SUBJECT TERMS (Conlanue on rverse if necesary and identify by block number) .. - ,c,.
FIELD GROUP SUO-GROUP computer programming; computer program reliability; .

military requirements; long range (time); technology transfer
software technology; weapon systems; computer personnel; STAR

19. ABSTRACT (Cniu an reyir Nf fecetaa andi dent~fy by blok nmber)
There is evidence that the future software state of practice will have to plan and build

many larger, more complex, more reliable, and more maintainable systems less labor-intensively
than the current state of practice does today. Moreover, the current state of practice, in
many cases, is having trouble meeting current requirements. Often, state-of-the-art technol-
ogies that could be used are not because widespread popularization of a software technology
can take more than 15 to 20 years. Accelerating the transition -of the state-of-the-art into
the state-of-practice is one opportunity for closing this technology insertion gap. Where
state-of-the-art technologies do not exist to improve the state-of-practice, R&D must be
fostered.

The STARS (Software Technology for Adaptable Reliable Systems) program is necessary to .
accelerate, coordinate, and disseminate the results of R&D in software technology, bridw.ing .--.
the gulf between future and current software technology states of practice, and meeting the
need for an improved software state-of-practice.

20 DISTRIBIUTION IAVAILABILITY OF ABISTRACT |21. ABSTRACT SECURITY CLA.SIFICATION

*UNCLASSIFIEDIUNLIMrTED 3 SAME AS Rit. OTIC USERS Unclassified
22&1 NAME OF RESPONSIBLE INDIVIDUAL 22 ;b TELEPHONE (Whau~le ArmsCoe c. OFICE SYMBOL

00 FORM 1473. 4 MAI 3 APR editton rey be used UnltI tihausted SECURITY CLASSIFICATION OF THIS PAGE
All ot r ed htofl are Obolte

+i,'%

,.,_,.., ,_,a,..a .. ** .,...5.r.%+'.(. .

UNCLASSIFIED

IDA PAPER P-1872

NEED AND RATIONALE FOR
THE SOFTWARE TECHNOLOGY FOR ADAPTABLE

RELIABLE SYSTEMS (STARS) PROGRAM

Samuel T. Redwine, Jr.
Sarah H. Nash

N. IS CfA&II
September 1985 " ;'"

D

Dl ,m 1.;: C

A I/ ___... !.

IDA

INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 84 C 0031
Task T-4-236

UNCLASSIFIED

Acknowledgments

The authors are indebted to a number of people for their help
on this paper. Vance Hall drafted an earlier document that served
as a basis to this one and many of his thoughts and words from
that document are incorporated here. Richard DeMillo, John
Manley, and William Riddle helped to identify many of the sources
cited in this report. They also reviewed the first edition of
this report (IDA Memorandum Report H-57) and made many
constructive suggestions. Special thanks go to Joyce Walker for
typing the figures.

ribt

A.

Table of Contents

1.0 Introduction.. 1

2.0 Future MCCR System Requirements 1

2.1 Software Requirements1.... 1

2.2 Manpower Shortage3

2.3 Summary of Future Software Technology State of
Practice Requirements6...................................... 6

3.0 Software Technology State of Practice (Current) 0...... 6

3.1 General Problems with the State of Practice....*...... 7

3.2 Problems Estimating the Cost and Size of Software
in the DoD... 8

3.3 Project Management Problem.&........... 9

3.4 Test and Evaluation Problems 10

3.5 Operation Problems.................................... 11

3.6 Summary of Software Technology State of Practice
(Current) 2

4.0 Cap Between Current State of Practice and Future State
of Practice Requirements............................. 12

4.1 Japanese Software Factory..............................12

4.2 Technology Maturation....................... 13

4.3 Technology Transition.................................. 15

4.4 Summary of Gap Between Current State of Practice
and Future State of Practice Requirements.................16

5.0 STARS Program Fills Gap and Meets Need 16

5.1 STARS..17

5.2 DoD, Industry, and University Contributions 17

5.3 Software Technology State of the Art 18

5.3.1 Failure to Heed Lessons of the Past.............18

5.3.2 Failure to Use New Methods18

v

5.3.3 New Methods Do Exist...........*............. .19

5.4 Summary STARS Program Fills Gap and Meets Need 22

6.0 Summary of the Arguments 22

vi

1.0 Introduction

This document briefly presents the major arguments supporting
the need for the Software Technology for Adapatable, Reliable
Systems (STARS) program. The STARS program, part of the
Department of Defense's Software Initiative, covers all aspects of
the software life cycle from both technical and management
viewpoints. It is intended to provide better management
practices, improve software acquisition strategies, improve the

underlying software technologies, increase personnel skill levels,create more powerful development and maintenance tools, increase

the extent to which tools are used, and make advances in both
software system methodology and software theory (120). Figure 1 is
a graphic overview of the arguments for STARS and their
relationships to one another.

Each section opens with a summary of the major points of the
argument addressed in the section. A brief discussion of the
argument with citations to the evidence that supports the argument
follows. Rather than interrupt paragraphs by citing references at
the end of each sentence, they are often grouped at the end of the
discussion of a particular argument. Other references to articles
and documents about STARS include (90)-(112), (137)-(140).

2.0 Future MCCR System Requirements

Future requirements for software within the DoD will be so
severe that without improvements in software technology, the DoD
will be unable to meet future needs. The points of this future
requirements argument are summarized as follows. Software is
becoming an increasingly important component of mission critical
computer resource (MCCR) systems. The number, complexity, and
criticality of functions performed by software in such systems are
all increasing. Furthermore, there is a growing manpower shortage
in the computer field that will compound future requireme'ts
unless ways are found to increase the productivity of computer
personnel.

2.1 Software Requirements

The last decade has seen a trend toward greater use of
computers in virtually all weapon and support systems. Almost
every item of defense equipment has one or more computer subsystem
which controls its operation in some mission-critical fashion.
From the avionics suite of the F/A-18 aircraft to the fire control
system of the MI tank, from the complex information processing
networks of the AEGIS fleet air defense system to the guidance and
control system of the MAVERICK air-to-ground missile, whether a
tiny chip in PATRIOT or a roomful of stand-alone mainframes in the
World Wide Military Command and Control System (WWMCCS), the
computer is present. Accompanying this massive infusion of
computer hardware into defense systems is, of course, the software
which makes it work (67).

*.- . . . - . - • - - . ,--. , . - --. . %

Figure 1

ARGUMENT OVERVIEW

Given:
Threat Assessment, National and Service Policies,

*" Strategies, and Plans

Future
MCCR System
Requirements

Current

Future Software Software

State of Practice State of

Requirements Practice

0\D Gap
Between Current

State of Practice and
Future State of Practice

Requirements

__ Sof tware

Management SASSoftware
Fills Engineering

Fills
Gap Institute

Industry and Gap Contributions

University
Contributions Other DoD

Contributions

Meets Non-Def ense

Nee Benef its

2
.

%

Some facts illustrate the increasing importance of software
to weapon systems. The Electronic Industries Association
estimates DoD expenditures on mission critical software in 1984 to
be $9 billion and predicts that it could reach $32 billion by 1990
(1). A review of the FY85 DoD budget presented to Congress by
Secretary Weinberger suggests that at least 75% of the programs
listed in that review have a software component (2). Among the
programs to begin in the 1985-1989 time frame, it can be estimated
that at least 80% will have a software development component (3).
In addition, over 70% of the technologies, functions, and systems
identified in five DoD and Service long range plans will require
software (4).

Not only will there be more software in the future, but
software will be responsible for more functions. Figure 2
demonstrates the growth in software demand, in millions of object
instructions generated, across four generations of the U.S. manned
space flight program as increasing numbers of functions were
automated. There is a clear trend toward automation through
software of more weapon system operations, such as guidance,
control, surveillance, intelligence, communication, and navigation
(5). Furthermore, the power of each automated function is
growing. For example, the current AEGIS air defense system can
track in excess of 200 targets while the Ballistic Missile Defense
System is planned to track and discriminate tens of thousands of
targets (6) - (7).

The future will see greater complexity as a result of the
trend toward integration of functions for such purposes as sharing
of data. The LHX helicopter, currently in the planning stages,
illustrates this trend toward integration. Unlike existing
helicopters which have no fusion and little information
integration capability, the LHX will have multiple sensors
integrated into a single display. This information integration
capability and other software will enable it to be a single pilot
aircraft (8).

Increases in software functionality and complexity imply that
software will be increasingly responsible for mission success.
Very high reliabilites will therefore be required of future 0
systems. For example, the need has been estimated for the
probability of failure in avionics of 10- 9 per 10 hours flight
operation (9).

DoD's software requirements are not the only ones that are
increasing as demonstrated by increases in software sales over the
past 20 years. During the period from 1963 to 1983, roughly 20
percent of the growth in industry revenues occured in the 16 year
period from 1963 to 1979 and 80 percent of the growth occured in
the last four years since 1979. From 1981 to 1983 packaged
software grew at a 40 percent annual rate. This compared to
increases of 26 percent for integrated systems and 16 percent for
custom software for that period (142).

UU

C44

*
4

1

aC aI,.

2.2 Manpower Shortage

The total amount of software that the DoD needs to build is
well beyond the capability of the number of software engineers
that can reasonably be expected to be available, using current
software development methods. According to a recent Department of
Commerce study (63), the 600,000 to 700,000 programmers and
systems analysts in the U.S. have not been able to fill the
dramatic increase in demand for their services that resulted from
the rapid growth in the use of computers. This increased demand
has caused their salaries to rise at an eight to ten percent
annual rate since 1978 (63). The current U.S. gap between demand
and supply has been estimated in terms of 50,000 to 100,000
software professionals, and if nothing is done, this gap could
become 860,000 to 1,000,000 software professionals by 1990 (10) -

9(11).

During the years 1979 through 1982, employment in software
products (packaged software) and professional services (including
custom programming) expanded at a 40 percent average annual rate.
Even during the recession years of 1980 to 1982, overall software
industry employment grew by 17 percent. The software products
sector had the highest growth rate of any sector during the
1981-1983 period, increasing threefold from 22,000 to 68,000
employees (63).

The National Science Foundation (NSF) projects an 8.9% -

12.3% annual growth rate for defense requirements for computer
specialists as opposed to a 5.4% - 6.4% growth rate for non
defense requirements for computer specialists (12). NSF also
predicts that the total shortfall for computer specialists will be
in the 15 to 30 percent range (about 115,000 to 140,000) by 1987
(12).

The life of some software, especially large military system
software can be as long as 15 to 20 years. For these systems, 60
to 75 percent of the costs incurred during the entire life cycle
can be attributed to maintenance. Some experts estimate that
about 20 percent of this phase consists of error correction and
the remaining 80 percent consists of changes and enhancements. In
many large organizations that develop their own programs, over one
half of staff time may be devoted to these functions, diverting
scarce resources from new development (63).

NSF contends that personnel shortages in the computer science
area can only be alleviated by large inflows of experienced
personnel. Although the computer occupations traditionally have
been very flexible in terms of accepting workers from other
fields, complex computer applications increasingly demand graduate
degrees. Therefore, continued high transfer rates from other
occupations may be difficult to sustain, especially as advanced
applications are introduced in areas such as CAD/CAM, information
technology, telecommunications, and the sophisticated modeling
encouraged by development of the supercomputer (13). The shortage

5

of computer specialists will be even more dramatic as software
requirements increase in the future, as is projected (14).

An alternative to alleviating the personnel shortage with
large inflows of experienced personnel is to increase
productivity. Much of the literature points to a need to increase
the productivity of analysts and programmers in the face of these
growing workloads and shortages of qualified people (15) -
(17).

To date, tools that improve the quality and increase the
quantity of software personnel work include high-level languages,
software development systems, and application generators. The
Department of Commerce report notes, however, that the most
progress to date has been made in coding, an area representing
only 10 percent of the development effort.

During the 1960's, the annual growth rate in software
productivity averaged about 8 to 9Z due largely to the transition
from assembly language to higher order language software
development (128). Higher order languages generally improve
productivity by reducing the number of source code lines (129).
Programmer productivity may be increased by as much as 5 times
when a suitable high-level language is used (132). For example,
E.A. Nelson has shown a 3-to-i productivity improvement for high
level language (133).

To date, the adoption of software engineering methods (or
modern programming practices) has lagged behind the need for more
efficient organization of software production. Similarly, the
growth of programmer productivity has been slow in relation to the
need for more programs (63).

2 .3 Summary of Future Software Technology State of Practice
Requirements

Figure I outlines this argument as follows. Future MCCR
system requirements imply future software requirements that
dramatically exceed present requirements and capabilities.
Moreover, a growing manpower shortage compounds the problem.

3.0 Software Technology State of Practice (Current)

The current state of practice is having problems meeting
current requirements. As a 1985 Air Force Studies Board report
(123) notes,

In spite of numerous past research and development endeavors
related to software engineering tools and methodologies, the
Air Force continues to experience problems in obtaining
required performance, quality, and productivity while
controlling cost and schedules of large software based
systems (123).

6

-F

Other sources support the observation that the problems in
software development and support are many and varied. They
include an inability to project the size or cost of software in
DoD programs, deficiencies in project management, and ineffective
test and evaluation techniques. These and other problems combine
to cause cost escalation and deployment delays. The net result is
unnecessary lengthening of the lead time required to meet new
enemy threats. Function is reduced and quality suffers as the
demand for new-systems increases. The final product can be an
ineffective or unsuitable system. If improvements are not made,
it is reasonable to expect more failures in operational weapon
systems in the near future (19).

3.1 General Problems with the State of Practice

Often, weapon system requirements and schedules are not met
because of problems with mission critical software. A 1982 DoD
task force on software problems observed four major categories of
software problems facing the DoD:

o life cycle
o production environment
o product
o technical and management professionals (20).

The task force subcategorized life cycle problems into
problems with:

o requirements definition and analysis
o management of life cycle activities
o software acquisition
o software product assurance
o transitions in the life cycle (20)6

Support environment problems that the task force identified
center around the lack of disciplined methods and development and
support tools. Furthermore, it observed that the failure to reuse
software results in a high degree of re-invention in software
development and higher costs. The task force also stated that
capital-investment in support environments has been insufficient
(20).

Problems with the software product cited by the task force
include the following. The software product does not always meet
the need for which it was developed. The lack of good analytical
models and hard empirical data on software make it difficult to
estimate cost and productivity. Poor designs and inadequate
documentation contribute to product-related problems (20).

The task force found problems relating to personnel including
an inadequate supply of qualified managers and professionals with
a wide range of skills and experience. In addition, present

7

incentives favor migration of skilled personnel from job to job
(20).

A study of the current state of practice on eight software
intensive systems (seven government and one commercial) found that
five of the development efforts were considered to be successful
while three were not. The data gathered does not support the
common belief that developments that utilize new technology will
succeed when others fail. However, it does point to some common
problems with the current state of practice (21).

One observation is that the susceptibility to requirements
definition problems is increasing. This is because in each system
studied, software was being used to implement functions that had
never before been attempted. Further, the capabilities being
implemented by software are becoming more varied and critical to
mission success. In spite of the importance of the requirements
definition process, few systematic techniques and little automated
support are used for these activities. The problem of changing
requirements compounds other problems found in the current state
of practice (21).

In the systems studied, the transition of responsibility for
software support from the developing organization (usually
commercial) to the Post Deployment Software Support (PDSS)
activity (usually governmental) typically did not occur without
problems (21). For example, on one of the projects, new tools
were developed for post deployment support. It should be noted
however, that the tools developed do not support activities
specific to the PDSS environment. In fact, it was felt that the
same tools would have been beneficial during the initial
development. In addition, the original documentation was of poor
quality and has been upgraded or, in cases where it did not exist,
created (119).

3.2 Problems Estimating the Cost and Size of Software in the DoD

One of the fundamental problems of the current DoD software
business is the inability to accurately measure its size.
Productivity improvement and future software size estimates have
meaning only in comparison to current figures. A 1974 report
states that "reliable information on most software and ADP costs
in DoD is unavailable in a clearly identifiable form" (22). In
1979, this finding was confirmed by the President's Reorganization
Project on Federal Data Processing which said that the total
dollar value of computer resources in the DoD is unknown (23).

Isolating software cost data for weapons systems remains a
problem in 1984 since a separate line item for software does not
exist in the DoD budget. Instead, it is treated as part of
individual weapons systems. Major software developments and
modifications are part of RDT&E funds, while software maintenance
activities are included in Operation and Maintenance funds. Even

8

%U

r

DoD program managers sometimes do not know how much is being spent
for software on their programs (24).

A 1983 study of 25 U.S. and Japanese organizations comprising
some 69 projects found that although nearly all projects collect
data, little of it becomes part of corporate memory to be used
beyond the project it was collected for. Moreover, in contrast to
their Japanese counterparts, U.S. companies rarely use this data
for post mortem analyses of projects. In particular, companies
experiment with cost and size estimation models, although, at the
time the study was done, no one trusted them enough to use them in
proposals. Non-standard definitions of types of data are also a
problem (18).

The problem of estimating software costs, staffing
requirements, and schedules was observed in the study of the
current state of practice of eight software intensive systems.
The size of the software effort was consistently underestimated
and the productivity of the people overestimated (21).

Similarly, the software cost history for an Air Force command
and control software project shows that the "best and final offer"
on which the winning bidder's contract was obtained was a little
over 25% of the original cost expectation, based on "opportunistic
assumptions and claims," but the subsequent "series of
realizations" resulted in escalating costs and in final costs that
were 10 times the winning bid (and almost three times the original
cost expectation) (136).

3.3 Project Management Problem

Another chronic problem area in the current state of practice
is project management. Several technical weaknesses exist at all
levels in the DoD's ability to measure, track, and control
software over its life cycle. These weaknesses inhibit the
achievement of the management control that is needed over
software. A recent survey of software engineering project
management problems found that 13 of 20 hypothesized problems
actually are important problems that face software engineering
project managers. The problems can be broadly classed as
planning, organizing, staffing, directing, and controlling
problems. The survey found that software engineering project
personnel do not generally agree on how to solve these major
problems. Moreover, less than 10% of the 100 universities
surveyed offer any courses which present a substantial amount of
material on software engineeering project management problems
although most professors seemed to feel that more classroom time
should be allocated to these problems (25). A separate survey
found that companies offer little training in the area of project
management in comparison to technical education (18).

DoD, industry, and university respondents to a 1982
questionnaire on software technology agreed that the most
important software problem is finding and keeping qualified

9

%~ - .~

personnel. This was perceived as much more of a problem than
measuring their competence or making best use of them. The
respondents also agreed that the second most important problem is
poor definition of goals and measures (i.e., software
requirements). With few exceptions, all respondents ranked the
managerial-related problems in the top half of the problem list
(26).

Other problems attributable to project management include the
limited use of software standards and tools. Standards vary
within a single organization because the software technology group
doing data collection, modelling resource usage, and generating
standards and practice documents does not have direct authority to
enforce adherence to software engineering practices on projects.
Software standards are often low and vary across a company because
there is no one person at the head of a project organization
making software decisions (18).

Likewise, tool use is relatively low across the industry.
Tools are most frequently used during the code and unit test
phase, in contrast to the requirements or maintenance phases in
which fewer tools are used. Corporate management, owing to a
limited software background, is not sympathetic to the use of
tools. Often a corporate focal point for tool selection,
deployment, and evaluation does not exist. Perhaps most
importantly, tools are most often bought with project funds
forcing projects to adopt both the risk and expenditure for the
tool and training. Tool use in Japan is more widespread, mainly
because tools are paid for out of overhead, increasing knowledge
and use of the tool throughout a company and lowering the risk to
any individual project (18).

3.4 Test and Evaluation Problems

Test and evaluation (T&E) is yet another problem area for the

current state of practice. The complexity of most defense systems
software, coupled with the fact that the software development
process in not a routine, regularized, clerical process which can
be easily organized, controlled, and graded, leads to a situation
in which quantitative approaches to T&E are difficult. The
criticality of most software applications makes the quantitative
measurement of performance and reliability absolutely necessary
(68).

According to a 1983 report of the Software Test and
Evaluation Project (STEP), many problems combine to limit the
effectiveness of current Defense practices in software test and
evaluation. These include: (1) insufficient financial and
personnel resources, (2) difficulty in selecting the best testing
strategy available for a given application, (3) lack of
availability of testing tools, and (4) difficulty of evaluating
early development testing since the results of these tests are
rarely documented or reported. All of these problems are
amplified by frequent modifications to requirements. When budgets

10

% % %% %

are cut or schedules slip, testing and quality assurance
activities are the first casualties.

Among the recommendations made by STEP to improve the current
state of practice in software testing are recommendations to
develop automated tools for software T&E and recommendations for
support of development and basic research which have long-term
benefits for software test and evaluation (27).

Another 1983 study of 25 organizations found that all of the
40 projects surveyed did reviews to a greater or lesser extent and

agree that they work. Integration testing for the most part
consists of stress testing. Among short-term recommendations made
by the report were that the review process needs improvement. For
the long term, the report recommended the development of a test
and evaluation methodology (18).

3.5 Operation Problems

These and other problems with the current state of practice
can result in final products that fail to operate correctly.
According to a 1981 report, "major U.S. weapon systems are
becoming more expensive at an alarming rate and they seldom if
ever work well and reliably in operational surroundings" (29). As
computers, and software in particular, become increasingly
critical components of weapon systems, malfunctions can result in
immediate danger, especially in NCCR applications.

Some examples of software problems in the area of defense
indicate the potential scope of the problem. The F-18 aircraft
had problems with a computer-controlled missile launch. NORAD
alerted U.S. forces about incoming Soviet missiles after detecting
the moon. A computer glitch caused a Navy warship's three-inch
gun to fire in the opposite direction from its intended target
(28).

A software bug caused an F-14 to fly off an aircraft carrier
into the North Sea (28). Another F-14 was lost to an
uncontrollable spin that was traced to tactical software. Yet
another F-14 looped as a result of an ill-advised one-line code
patch. Fortunately that bug was caught in simulation (121).

The first version of the F-16 navigation software inverted
the aircraft whenever it crossed the equator. Fortunately, this
was caught in simulation testing (122). The F-16 flight software
at one point was unable to right the plane when it was exactly
upside down. The program had to choose between rolling right and
rolling left and somehow deadlocked (121).

111

3.6 Summary of Software Technology State of Practice (Current)

There is evidence, therefore, that the state of practice is
having problems producing software to meet current requirements.
Furthermore, indications are that software is expensive to produce
in terms of time, personnel, and financial resources, although it
is at present difficult to know the exact cost of software to the
DoD. Hany problems can be attributed to software management, but
there is not general agreement on how to solve such problems and
university courses do not devote the time to these problems that
professors agree they deserve. Test and evaluation, especially
crucial to software reliability, is another area in which the
state of practice needs help. Software, as a major component of
weapons is increasingly cited as a cause of weapon systems
failures.

4.0 Gap Between Current State of Practice and Future State of
Practice Requirements

If the current state of practice does not meet current needs,
it will not be able to meet future needs either. As Figure 1
shows, there is a gap between the future software technology state
of practice requirements and the current software technology state
of practice. This gap must be reduced if the U.S. is to see
improvement in software development.

The U.S. can close the gap between required software capacity
and the current state of practice by exploiting software
technology that is now emerging (see section 5.3) and by fostering
R&D in new software technologies to meet future requirements. The
software factory concept is one example of a state-of-the-art
software technology that has shown gains in programmer
productivity. However, maturation time for software technology
currently averages 15-20 years (66). By accelerating the
transition of state-of-the-art software technologies into the
state of practice, the DoD can reduce labor intensiveness and
latent defects, and improve predictability, performance, and
responsiveness to changing threats (46) and (69).

4.1 Japanese Software Factory

* One example of a software technology that promises gains in
productivity if it is incorporated into the state of practice is
the specialized Japanese "Software Factory". Specific
productivity and quality figures on Japanese software factory
results can be found in (70) - (72).

As an illustration, the productivity rate at Toshiba's Fuchu
Works' software factory has increased 14% annually since 1976,
reaching an average of 2870 instructions per programmer per month
in 1981. Prior to this, from 1972-1976, instructions per
programmer per month averaged 1318. This software factory
attributes it's high productivity to a return on its investment in

12

- - o- - - ..-.. - - * * . *. * *** - , . --- **. - *****. . * . * -* .* *** . *',-.. -**-** - l - - -Si . S

software tools and computer networks, reuse of modules validated
through previous applications, and its quality assurance plan
(73). Thus, introducing such technologies into the state of
practice can improve the ability to produce software.

4.2 Technology Maturation

Research indicates that bringing a technology to the point of
maturation where it is popularized and disseminated to a large
portion of the technical community generally has taken more than

*4 15-20 years. This includes time for research and concept
formulation, development and prototyping, enhancement and
exploratory use, and dissemination (74). Software technology
maturation case studies upon which this observation is based are
(32) - (44). Another study indicates that 4-8 additional years
may be required to propagate that technology throughout a large
organization (75).

Certain factors that inhibit or facilitate the maturation of
technolor can be identified and exploited. Particularly
important to technology maturation are a recognized need, a
receptive target community, and a believable demonstration of
cost/benefit. Well-designed channeling of attention and support,
an articulate advocate, prior success, incentives, technically
astute managers, readily available help, latent demand,
simplicity, and incremental extensions to current technology also
facilitate the maturation process (76).

For example, technological R&D can be made more productive by
understanding and exploiting the S-curve phenomenon. Too often,
instead of viewing technological changes in a long-term strategic
context and managing it accordingly, managers focus on short-term
remedies. This tendency is reinforced by other factos that favor
the pursuit of existing technologies and tend to suppress timely
exploitation of innovative alternatives (141).

In the earliest phases of a new technology, progress and
therefore, R&D productivity is slow. As the technology
progresses, so does productivity, reaching a maximum at the
midpoint of the curve. It is at this point, before the S-curve
flattens out, that managers should be thinking of getting onto a
new S-curve where the slope ahead is steeper. Figure 3
illustrates this concept (141).

Making the transition to a new technology is both risky and
difficult, but the most common error is poor timing. To preserve
long-term strategic flexibility, management should begin to
explore technological alternatives when roughly half the full
potential of the current technology has yet to be exploited (141).

Unfortunately, common business management tools and practices
often mask this phenomenon. Management systems, marketing
approaches, and financial analyses tend to reward short-term

13

0D

z

z O

uii

LUL

I-4-I

'4.

performance based on incremental advances over the competition
(141).

Forecasts beyond a 3- or 4-year horizon are usually
unreliable, discriminating against a decision to invest in a move
to a new technological S-curve where cash flows in early years
look less attractive. The portfolio approach to resource
allocation tends to emphasize the allocation of resources among
existing opportunities, rather than the generation of new ones
(141). Thus, the role exists for the U.S. to make the large step
to the next S-curve.

This is just one example of how understanding and exploiting
the technology maturation process can hasten improvements in the
software technology state of the art. Thus the technology
maturation process provides the basic context needed for
transitioning technology into widespread use.

4.3 Technology Transition

Technology transition activities are planned, overt actions
taken to move a piece of technology into widespread use. The
challenge is to find ways of introducing new technologies faster
in order to produce better software more efficiently. A recent
workshop (77) addressed the issue of software engineering
technology transfer. Specifically it looked at:

(1) ways of evaluating software technologies and the

technology transfer process itself;

(2) training as a technology transfer vehicle;

(3) processes required for effective software engineering
technology transfer and the vehicles that might be used to
implement such processes; and

(4) behavioral aspects of software technology transfer.

It determined that an important obstacle to technology
transfer is the lack of a coherent and well defined software
engineering product life cycle process. Common understanding and
agreement of a software engineering product life cycle is
necessary in order to effectively carry out the technology
transfer process. This process consists of:

o identifying available technologies and their costs and
benefits;

o overcoming resistance to change;
o selecting appropriate vehicles for technology transfer

(depending on the life cycle phase);
o integrating multiple technologies across time and
o overcoming proprietary restrictions.

15 p

N",,

Some possible transfer vehicles include:
o education,
O training,
o tool provision,
o personnel transfer,
o management edict,
o measurement,
o consulting,
o quality circles,
o documentation,
o contracts,
0 rewards and incentives,
0 publicity and advertising,
0 demonstrations,
0 experiments,
0 pilot projects,
0 planning mechanisms,
0 competition and challenge,
o human interface and
o technical interaction (77).

Thus, the opportunity exists to accelerate the propagation of
state-of-the-art software technologies into the state of practice
and significantly improve the DoD's capacity to produce defense
software.

4.4 Summary of Gap Between Current State of Practice and Future
State of Practice Requirements

As evidenced by the Japanese software factory, the potential
exists for state-of-the-art software technologies to improve the
state of practice. However, based on studies of other software
technologies, the natural maturation of a software technology can
take 15 to 20 years, too long to improve the state of practice in
the near-term. The potential exists to accelerate this process by
undertaking technology transition activities.

5.0 STARS Program Fills Gap and Meets Need

Significant basic technology exists and the defense software
community is poised to exploit it. A software improvement program
is necessary to effect changes in the software state of practice
in order to meet future needs. As Figure I shows, such a program
requires the contributions of DoD activities, industry, and
academia as well as unexploited state-of-the-art technologies.
Bringing state-of-the-art technologies to the state of practice
can help close the gap.

Since the accelerating pace of computing technology is too
fast and too capital intensive for any single organization to keep
up with alone (78) - (87), a number of DoD and private sector
programs have been initiated to improve the software technology
state of practice. Articles (78) - (87) strongly imply that

16

P 0, - F

cooperation among Governments, professional societies, and major
commercial enterprises and centrally managed financial resources
are essential for the survival of industrial nations. A centrally
managed effort is therefore necessary to achieve the required
capability by the time the DoD needs it.

A centrally managed program and funding source (supplemented
by existing defense laboratory programs and industry IR&D
(independent research and development) investment), with much of
the actual work being contracted through or performed by DoD
laboratories and by weapon system programs, would offer the great
advantages of elimination of unnecessary duplication and gaps,
together with a central focus for identification of opportunities
and program advocacy.

5.1 STARS

As a central focal point, the STARS program can help assure
that the DoD has the technology it needs, when it needs it,
without unnecessary duplication of effort. The STARS program
defines, plans, develops, demonstrates, integrates, evaluates, and
disseminates tri-service software technology (118).

STARS is specifically designed to mesh closely with and build
upon individual Service and defense agency programs, including the
Ada program and the Software Engineering Institute (SEI). It will
demonstrate and evaluate the feasibility of new techniques such as
computer-aided software support systems. STARS will produce
mechanisms for implementation and evaluation of other Service
agency sponsored software techniques such as the Joint Logistics
Commanders' software standards, and the new testing methods
resulting from the DoD Software Test and Evaluation Project (STEP)
(114).

5.2 DoD, Industry, and University Contributions

Several DoD and private sector programs have been initiated
to improve the state of practice of software technology. The DoD
initiatives include the STARS and Ada programs, the SEI, DARPA's
Strategic Computing Program, the STEP, and the Super Computing
Research Center. The Microelectronics and Computer Technology
Consortium is addressing the software-related concerns of human
interface and early requirements and design. STARS is maintaining
close contact with the planners of the still embryonic Software
Productivity Consortium to ensure that their efforts are
complementary.

The SEI has been established to bridge the gap between R&D

activities that demonstrate new techniques and the exploitatiin of
those techniques in system developments in order to effect a
significant and rapid improvement in the means of development and
support of computer software for mission-critical defense
systems. The Software Engineering Study Panel endorsed the
creation of the SEI to be a central driver in the technology

17

Lz -ze

* 4 4 4 - *

insertion process. The SEI was designed to pool scarce resources,
provide goal-directed technical management, select high-payoff and
mutually-supportive technologies, engineer selected technologies
to mission critical scale and quality, and establish visible
standards of excellence in practice and ensure that they are met
by the whole MCCR software community (88).

A number of the largest defense contractors (and some smaller
ones) have made considerable investments in the development of
their own internal software engineering environments. With
additional funding, it would be possible for them to accelerate a
the development of these software engineering environments and to
tailor them more closely to satisfy DoD needs (89).

* 5.3 Software Technology State of the Art

The software technology state of art offers opportunities to a
," improve the state of practice. The software engineering
* environment is one example of a state-of-the-art software

technology that is currently receiving a great deal of attention
in the literature. In spite of the rapid development of new and
potentially superior methods, however, techniques, methods, and
practices 10 and 15 years old are routinely used.

5.3.1 Failure to Heed Lessons of the Past

A 1979 study of 50 cases from government, industry, and
university software projects in the Los Angeles area estimates
that lessons learned and published 18 years earlier in software
engineering are not heeded half of the time. Some factors that
account for this lag include rapid technological change, education
shortfalls, technology transition inhibitions, resistance to
disciplined methods, inappropriate role models, and a restricted
view of software engineering (30).

5.3.2 Failure to Use New Methods

A study of seven software-intensive government systems and
one commercial system found that technologies applied during
software development can usually be traced to the requirements of
the military standards that have been referenced in the
contracts. In general, developers are not rewarded for exceeding
the minimum technological requirements of the standards, and these
developers did not do so. Relatively few automated tools were
available or used by any of the projects for design, coding,
testing, or software support (31).

A 1983 survey of several companies and organizations
describes the software engineering technologies being used for
projects of different types. For the most part, the industry at
large rarely uses software engineering technologies correctly.
General characteristics of the software development environment
are that

18

IA

o requirements are most often done in natural language text
with little tool support;
o there is little traceability between specifications and
design;
o designs are expressed most often in some form of Program
Design Language (PDL)
o although most coding is done in high level languages, it
lacks proper machine support;
o the integration test phase consists mostly of stress
testing; and
o maintenance is rarely performed by the software developer.

The report also observed that most companies are willing to invest
in hardware but not software. Problems with the current
technology include the inability to transport tools among hardware
and the failure of many tools to live up to promises (18).

5.3.3 New Methods Do Exist

Substantial unexploited software technology exists. Some
state-of-the-art technologies offer the ability to correct many of
the underlying causes of the problems described above, but are not
widely used (45), (113), (115) - (117). Concrete examples of some
of these unexploited software technologies are found in (65).

A 1982 document (45), drawing from several Defense Science
Board recommendations, earlier planning documents, and independent
recommendations proposed by interested and concerned groups,
identified and assessed 13 areas with substantial opportunities
for improving the software technology state of practice:

o integrated support environments,
o system definition technologies,
o maintenance techniques,

40o reliability technologies,
o database technologies,
o distributed systems,
o knowledge-based systems,
o hardware/software synergy,
o human factors,
o technology transfer,
o measurement technologies,
o management tools and techniques and
o applications-oriented technologies and software reuse

(45).

A 1983 conference on software development tools, techniques,
and alternatives identified an extensive list of state-of-the-art
technologies with the potential to improve the state of the
practice including:

o object oriented programming,
o software management tools,
o rapid prototyping and application generators,

19

F'* P - -- -'r o .%e

o debugging tools,
o software design tools,
o software development environments and
o software development data management (46).

A 1983 report on the software state of practice made some
short-term and long-term recommendations for improvement.
Short-term recommendations included:

o making available more and better computer resources for
development;
o evaluating methods and tools;
o building tool support for a common high level language;
o improving review processes;
o using incremental development; and
o collecting and analyzing data.

For the long-term, the report recommended:

o maintaining compiler technology;
o trying prototyplng;
o developing test and evaluation tools;
o examining the maintenance process and
o encouraging innovation (18).

A 1983 Air Force Scientific Advisory Board Ad Hoc Committee
on Software recommended establishing a Software Engineering and
Computer System Technology and Support Center to collect and focus
Air Force resources on software issues. It contends that the Air
Force must have a central organization to concentrate and focus
the R&D expenditures required to make significant improvements in
the underlying technology essential to providing the needed
technology improvements in the software acquisition and production
process. In addition, it recommends increasing investment for
software engineering tooling and increasing funding for long range
software production technology research to insure the acceleration
of advanced technologies. Such technologies include: very high
order languages, applications generators, knowledge-based systems,
reuse of application units, and verification technology (64).

For example, it has been estimated that Ada will reduce
coding effort in the far-term by 44% for applications software
development and 40% for support software. Estimates for reduction
in lines of code from Ada range from 5 to 10% in the near-term to
50% in the long-term (130). Another source hypothesizes a 75%
improvement in coding efficiency from the continued spread of new
and powerful languages such as Pascal and (possibly) Ada (131).
Another way in which productivity of coding might be improved in
the "near" future is finding and correcting errors in groups early
on. This has been shown to translate to a 23% increase in
productivity of coding (134).

Application generators and formal specification and
transformation systems also show promise. Application generators

20

are software packages designed to help end-users build
applications in a given domain. Formal specification and
transformation systems use a formal specification language to
express system design. The resulting specification is
automatically checked for consistency and completeness after which
it is transformed into an executable program either by automatic
means or by interaction with the designer (135).

A 1985 Air Force Studies Board report on methods to improve
software quality and life cycle cost made several
recommendations. These included:

o Develop first, second, and third generation software
engineering environments to incorporate increasing levels of
comprehensive and integrated tools and techniques such. as
Artificial Intelligence;

S>

o Improve management of software in the acquisition,
development, and operations and maintenance phases by

- increasing use of prototyping,
- creating centers of expertise in software,
- developing software management tools,
- providing better training and incentives, and
- improving procedures for selecting managers.

o Promote resuable support tools, models, subsystems, and

Ada packages (123).

Careful management approaches to computer development and the
development of more sophisticated man-machine interfaces will
improve productivity. Prototyping and reusable code and design
are also attractive options (135).

Although the level of detail varies in the lists of
opportunities presented above, there is overlap between them.
This indicates agreement on certain candidate technologies to
improve the state of practice. One such technology that has
received intensive attention over the past few years is the
software engineering environment (47) - (51). The Japanese,
British, European Community, Brazilians, and many U.S. commercial
enterprises are embarking on the development of such systems. The
time appears ripe for exploitation of this technology (52) -
(60).

The Japanese environment project, known as Sigma, will
develop a Japan-wide Unix-based network. It will offer four
software engineering databases for software modules, software
tools, software products, and technical information (124). The
Alvey Directorate in the United Kingdom is developing three
generations of Integrated Project Support Environments. The first
generation will be a file based Unix system, the second will be
database-oriented with a distributed operating system, and the
third will be intelligent (knowledge based system) oriented
(125). Brazil has plans to develop a software factory (126).

21

V -" Vr V, -

The European Economic Community has recently made a $1
billion commitment to the European Strategic Program for Research
and Development in Information Technology (ESPRIT) (61). ESPRIT
pools the research efforts of a dozen European electronics firms
concerned with several technologies, including software. The
ESPRIT Project is funded jointly by the European governments with
an equal amount being added by the companies (62).

ESPRIT is working on the development of a Portable Common ~
Tool Environment (PCTE) which will provide a common base for
software engineering environments aimed at supporting European
cooperative research and development and at fostering widespread
dissemination and exploitation of emerging technologies, methods,
and tools. For its wide availability, Unix is expected to play
the role of "initial common environment" for the time being
(127). To date, PCTE specifications have been developed.

5.4 Summary STARS Program Fills Gap and Meets Need

Given that substantial unexploited software technology exists
and that software problems and requirements have much in common
across the Services, a centrally managed DoD software improvement
program can improve the state of practice of software technology.
Ada and the Joint Logistics Commanders' software standards, by
fostering uniformity and cooperation among the Services have
prepared the DoD community sociologically and organizationally for
change. The time is now right for a centrally-managed DoD effort
such as STARS to exploit this uniformity among the Services in

. order to improve productivity and to achieve greater system
reliability and adaptability, while at the same time, coordinatingS.

the efforts of the private sector with those of the DoD
laboratories and organizations like the SEI to stimulate R&D and
technology insertion.

STARS will provide the means by which laboratories and
program managers, and their industry counterparts will have access
to usable technology products vital to future mission critical
systems. The SEI, as a partner to STARS will encourage and
accelerate the transition of these technology products into
practice with respect to DoD mission critical systems (114).
Their use could also aid U.S. international competitiveness.

6.0 Summary of the Arguments

Software for future MCCR systems will be more pervasive and
perform more functions than current software. Consequently, it
will be more complex and critical to mission success. Moreover,
there is a growing shortage of computer personnel to meet these
needs. The future software state of practice will therefore have
to plan and build many larger, more complex, more reliable, and
more maintainable systems less labor intensively than the current
state of practice does today. The result is a gap between the

22

future state of practice requirements and the current state of
practice.

To compound the problem, there is evidence that the current
state of practice has trouble meeting current requirements.
Often, state-of-the-art technologies that could be used are not.
This is because widespread popularization of a software technology
can take more than 15-20 years. The opportunity exists to reduce
this lag by undertaking activities that will facilitate rather
than inhibit technology transition. Thus, as Figure 1 indicates,
accelerating transition of the state of the art into the state of
practice can be used to close the technology insertion gap. .

In those areas where state-of-the-art technologies do not
exist to improve the state of practice, R&D must be fostered. DoD
activities, industry, and academia are making contributions in
this area, but the total effort is too big an undertaking for any
one entity.

Therefore, the STARS program is necessary to accelerate,
coordinate and disseminate the results of R&D in software
technology. As Figure 1 shows, STARS bridges the gulf between
future and current software technology states of practice, meeting
the need for an improved software state of practice.

1

23

- ~ 4 - - b Mi' *

.9

S

I

4.

0

p

-'S

1

ij

up

1

u.s

-9

S

-at-as-ac %%%%%%%.~~~%%%i'-u

prrtttt t t'V~, ~# te ,st.aett% & ~ 'w C *

REFERENCES

1. DoD Digital Data Processing Study - A Ten Year Forecast,
Electronic Industries Association, 1980, p. 120.

2. Redwine, Samuel T., Jr. et al, DoD Related Software Technology
Requirements Practices, and Prospects for the Future, Institute
for Defense Analyses, IDA Paper P-1788, June 1984, p. 2.

3. Ibid., p. 13.

4. Ibid., p. 16.

5. Probert, Thomas H. et al, An Assessment of Software Technolog
in Defense Systems (Interim Report), Institute for Defense
Analyses, March 1984 - no page numbers.

6. Op Cit., Redwine, Samuel T., Jr., et al DoD Related Software
Technology Requirements, Practices, and Prospects for the Future,
p. 25.

7. Report of the Study on Eliminating the Threat Posed by Nuclear
Ballistic Missiles, Vol. V (Battle Management, Communications, and
Data Processing), Defensive Technologies Study Team, October 1983.

8. Op Cit., DoD Related Software Technology Requirements,
Practices, and Prospects for the Future, p. 2 4 .

9. Murray, N. et al, "Highly Reliable Multiprocessors,"
AGARDograph No. 224, Integrity in Electronic Flight Control
Systems, edited by P.R. Kurzhals, Advisory Group for Aerospace
Research and Development, April 1977, pp. 17.1-17.6.

10. Martin, E.W., "Strategy for a DoD Software Initiative,"
Computer, (March 1983), p. 53.

11. "Software Technology in the 1990's Using the Current Life
Cycle Paradigm," Appendix liA, in Strategy for a DoD Software
Initiative, Volume II: Appendices, Department of Defense, 1
October 1982, p. 207.

12. Projected Response of the Science, Engineering, and Technical
Labor Market to Defense and Non-Defense Needs: 1982-87, National
Science Foundation, NSF 84-304, January 1984, pp. 36-39.

13. Labor-Market Conditions for Engineers: Is There a Shortage?:
Proceedings of a Conference, Office of Scientific and Engineering
Personnel, National Research Council, National Academy Press, June
1984, p. 56.

25

____ .;...'.L A%

14. Rakoczki, L., "The Software Liberation Party, Break Away from

the Programmer's 'Personal Touch,'" Data Management, volume 17,
number 4, April 1979, pp. 14-16.

15. LaBelle, Charles et al, Finding, Selecting, Developing, and
Retaining Data Processing Professionals Through Effective Human

*- Resources Management, Van Nostrand Reinhold Company, 1983.

16. Bosworth, G.H., "Managing a Programmer Shortage," Datamation,
volume 27, number 9, 25 August 1981, pp. 82 and 86.

17. Op Cit., Labor Market Conditions for Engineers: Is there a
Shortage?.

18. Zelkowitz, M.V., et al, The Software Industry: State of the
Art Survey, Technical Report, TR-1290, Department of Computer
Science, University of Maryland, May 1983.

19. Report of the DoD Joint Service Task Force on Software
Problems, Department of Defense, July 30, 1982, pp. 28-29.

20. Ibid., pp. 10-27.

21. Op Cit., Redwine, Samuel T., Jr., et al, DoD Related Software
Technology Requirements, Practices, and Prospects for the Future,
pp. 74-79.

22. Fisher, David A., Automatic Data Processing Costs in the
Defense Department, Institute for Defense Analyses, IDA Paper
P-1046, October 1974, p. 2 .

23. Jensen, Alton P. et al, Information Technology and
Governmental Reorganization: Summary of the Federal Data
Processing Reorganization Project, Office of Management and
Budget, President's Reorganization Project, April 1979.

24. Op Cit., Redwine, Samuel T., Jr., et al, DoD Related Software
., Technology Requirements, Practices, and Prospects for the Future,

p. A-3).

25. Thayer, R.H., et al, "Major Issues in Software Engineering
Project Management," IEEE Transactions on Software Engineering,
volume SE-7, number 4, pp. 333-42, July 1981.

26. Siegel, Eric D., Summary of Responses to the Software
Technology Initiative Questionnaire, Mitre Corporation,
MTR-82wO0085, May 1982, pp. 6-8.

27. DeMillo, R.A. and Martin, R.J., OSD/DDT&E Software Test and
Evaluation Project, Volume 1, Report and Recommendations, School
of Information and Computer Science Georgia Institute of
Technology, Atlanta, GA, pp. 33-34.

26

28. Leumann, Peter G., "Letter from the Editor," Software
Engineering Notes, volume 8, no. 5, October 1983, pp. 1-6.

29. Heatherly, Charles L., editor, Mandate for Leadership: Policy
Management in a Conservative Administration, The Heritage
Foundation, 1981, p. 131.

30. Boehm, B.W., "Software Engineering-As it Is," Proceedings of
the 4th International Conference on Software Engineering 11-21,
1979.

31. Op Cit., Redwine, Samuel T., Jr., et al, DoD Related Software
Technology Requirements, Practices, and Prospects for the Future,
p. 77.

32. Bailey, John, Cost Model Technology Transition, May 1984.

33. Clements, Paul C., et al, Case Studies of Software Engineering
Technology Transfer, Tech. Memorandum, Naval Research Laboratory,
April 1984.

34. DeMillo, Richard A., Compiler Technology Insertion Network
Study, May 1984.

35. Manley, John H., Technology Case Study: Software Engineering
Concepts, Tech. Memo, Computing Technology Transition, Inc.,
Madison, Connecticut, May 1984.

36. Manley, John H., Technology Case Study: Software Metrics,
Tech. Memo, Computing Technology Transition, Inc., Madison,
Connecticut, April 1984.

37. Manley, John H., AFR 800-14 History, Tech. Memo, Computing
Technology Transition, Inc., Madison, Connecticut, May 1984.

38. Marmor-Squires, Ann, Formal Software Verification as an
Example of Software Technology Transfer, TRW Defense Systems
Group, Fairfax, VA, May 1984.

39. Martin, R.J., DOD-STD-SDS: The Development of a Standard, May
1984.

40. Redwine, Samuel T., Structured Programming: A Technology
Insertion Case Study, Computer and Software Engineering Division,
Instituce for Defense Analyses, May 1984.

41. Riddle, William E., "The Magic Number Eighteen Plus or Minus
Three: A Study of Software Technology Maturation," ACM SIGSOFT
Software Engineering Notes, 9, 2 (April 1984) (Includes case
studies of Unix, Smalltalk-80, and SREM).

42. Riddle, William E., Knowledge-based Systems as a Case Study in
Software Technology Maturation, SDAM/15, software design &
analysis, inc., April 1984.

27

• . °.. . • . . . ° . . o .. oo °° ° %o . o . . . ° • . . • wI

43. Riddle, William E., Abstract Data Types as a Case Study in

Software Technology Maturation, SDAM/16, software design &

analysis, inc., April 1984.

44. Weiss, David, Time Line for Development and Transfer of SCR

Methodology, February 1984.

45. "Appendix 11 - Opportunity Assessments," Strategy for a DoD

Software Initiative, Volume II: Appendices, Department of Defense,
I October 1982, pp. 11-200.

46. Softfair, A Conference on Software Development Tools,
Techniques, and Alternatives, Arlington, VA Jul 25-28, 1983, pp.

* 267-395.

47. Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering

Environments, Symposium on Practical Software Development
Environments, Pittsburgh, PA, April 23-25, edited by Peter
Henderson, in Software Engineering Notes, volume 9, number 3, May
1984.

48. Interactive Programming Environments, edited by David R.

Barstow, Howard E. Shrobe and Erik Sandewall, New York,
McGraw-Hill, 1984.

49. Software Engineering Environments, Proceedings of the
*Symposium held in Lahnstein, Federal Republic of Germany, June

16-20, 1980 edited by Horst Hunke, North-Holland, 1981.

50. IEEE Computer Society 1984 Conference on Ada Applications and
Environments, October 15-18, 1984, St. Paul, MN, sponsored by
IEEE-CS Computer Languages Technical Committee.

51. Proceedings of the Symposium on Application and Assessment of
Automated Tools for Software Development, November 1-3, 1983, San
Francisco, CA, sponsored by IEEE Computer Society and University
of Texas at Austin.

52. "Software Engineering: The Age of the Software Factory is
Here," Special Issue, Computer, volume 8, number 5, May 1975.

53. Bratman, H. and T. Court, "The Software Factory, Computer,
volume 8, number 5, May 1975, pp. 28-37.

54. McNamara, D.M., "Japanese Software Factories," A Public
Briefing, General Electric Corporate Information Systems,
Bridgeport, Connecticut, 1983.

55. Kim, K.H., "A Look at Japan's Development of Software

Engineering Technolog)," Computer, volume 16, number 5, May 1983,
pp. 26-37.

28

56. Martin, E., "Keynote Address," Proceedings Milcom III -

Military Computers and Software, American Defense Preparedness
Association, Washington, D.C., 25-26 January 1984, pp. 3-19.

57. Manley, J.H., "The Emerging Technologies - The STARS Program,"
Proceedings Milcom III - Military Computers and Software, American
Defense Preparedness Association, Washington, D.C., 25-26 January
1984, pp. 46-48.

58. Tajima, D. and T. Matsubara, "Inside the Japanese Software
Factory," Computer, volume 17, number 3, March 1984, pp. 34-43.

59. Zelkowitz, M.V., et al, "Software Engineering Practices in the
U.S. and Japan," Computer, volume 17, number 6, June 1984, pp.
57-66.

60. Manley, J.H., "Computer Aided Software Engineering (CASE)
Foundation for Software Factories," Proceedings COMPCON Fall '84.

61. "International Report," Computerworld, February 4, 1985, p.
24.

62. DeMillo, Richard A., et al, Software Engineering Environments
for Mission Critical Applications--STARS ALternative Programmatic
Approaches, Institute for Defense Analyses, IDA Paper P-1789,
August 1984, p. A-66.

63. A Competitive Assessment of the U.S. Software Industry,
Science and Electronics, Office of Computers and Business
Equipment, Assistant Secretary for Trade Development, Department
of Commerce, December 1984.

64. Report of the U.S. Air Force Scientific Advisory Board Ad Hoc
Committee on the High Cost and Risk of Mission-Critical Software,
U.S. Air Force Scientific Advisory Board Ad Hoc Committee on the
High Cost and Risk of Mission-Critical Software, December 1983,
pp. 4-1 - 4-5.

65. Op. Cit. Redwine, Samuel T., Jr. et al, DoD Related Software
Technology Requirements, Practices, and Prospects for the Future,
p. 110.

66. Redwine, Samuel T. and Riddle, William E., "Software
Technology Maturation," 8th International Conference on Software
Engineering, August 1985.

67. Linder, Isham (RAdm Ret., USN), "Keynote Address," NSIA/DoD
National Conference on Software Test and Evaluation, 1-3 February,

1983, p. 2.

68. Ibid., p. 3.

29

N

-~ - N.

'S 'S. '- ' , .-. . .% - =- . .%%" --* ' _ % %' w- -

69. Op Cit., Report of the U.S. Air Force Scientific Advisory
Board Ad Hoc Committee on the High Cost and Risk of Mission
Critical Software.

70. Namara, D.M., "Japanese Software Factories," A Public
Briefing, General Electric Corporate Information Systems,
Bridgeport, Connecticut, 1983.

71. Kim, K.H., "A Look at Japan's Development of Software
Engineering Technology," Computer, volume 16, number 5, May 1983,
pp. 26-37.

72. Manley, J.H., "Computer Aided Software Engineering (CASE)
Foundation for Software Factories," Pro-ceedings COMPCON Fall '84.

73. Op Cit., Kim, K.H., "A Look at Japan's Development of Software
Engineering Technology," p. 32.

74. Op Cit., Redwine, Samuel T., Jr. et al, DoD Related SoftwareTechnology Requirements, Practices, and Prospects for the Future,

p. 137.

75. Willis, R.R., "Technology Transfer Takes 6 Plus/Minus 2 Year,"
Proceedings IEEE Workshop on Software Engineering Technology
Transfer, April 1983.

76. Op Cit., Redwine, Samuel T., Jr. et al, DoD Related Software
Technology Requirements, Practices, and Prospects for the Future,
pp. 94-100.

77. IEEE Computer Society Workshop on Software Engineering
Technology Transfer, Miami Beach, Florida, April 25-27, 1983.

78. A Programme for Advanced Information Technology, The Report of
the Alvey Committee, Department of Industry, London, England, Her
Majesty's Stationery Office, October 1982.

79. Karatsu, H., Fifth Generation Computer Systems, North-Holland
Publishing Company, Amsterdam,-New York-Oxford, 1982.

80. Software Technology for Adaptable, Reliable Systems (STARS)
Program Strategy, Department of Defense, Office of the Secretary
of Defense, OUSDRE (R&AT)-CSS, 15 March 1983.

81. Musa, J.D., Ed., "Stimulating Software Engineering Progress -
A Report of the Software Engineering Planning Group," ACM Software
Engineering Notes, volume 8, number 2, April 1983, pp. 29-54.

82. Steier, R., Ed., "Cooperation is the Key: An Interview with
B.R. Inman," Communications of the ACM, volume 26, number 9,
September 1983, pp. 642-645.

30

83. Withington, F.G., "Winners and Losers in the Fifth
Generation," Datamation, volume 29, number 12, November 1983, pp.
193-209.

84. Sumney, L., "The Evolving Partnership
Congress/Industry/Military - Industry Cooperation," Proceedings
Milcom III - Military Computers and Software, American Defense
Preparedness Association, Washington, D.C., 25-26 January 1984,
pp. 46-48.

85. Heffernan, H., "DoD to Set Up $74 Million Software Institute,"
Government Computer News, volume 3, no 4, April 1984.

86. "Reshaping the Computer Industry," Business Week, July 16,
1984, pp. 84-111.

87. "Focus on Japan," Special Issue of Creative Computing, volume
10, number 8, August 1984.

88. Report of Findings and Recommendations -- Software Engineering
Institute Study Panel, IDA Record Document D-49, Institute for
Defense Analyses, December 1983, p. 9.

89. Private communication with Vance Mall.

90. Druffel, Larry E., Samuel T. Redwine, Jr., and William E.
Riddle, "Guest Editors' Introduction: The DoD STARS Program,"
Computer, volume 16, number 11, November 1983, pp. 9-13.

91. Martin, Edith W., "The Context of STARS," Computer, volume
16, number 11, November 1983, pp. 14-20.

92. Druffel, Larry E., Samuel T. Redwine, Jr., and William E.
Riddle, "The STARS Program: Overview and Rationale," Computer,
volume 16, number 11, November 1983, pp. 21-29.

93. Boehm, Barry W., and Thomas A. Standish, "Software Technology
in the 1990's: Using an Evolutionary Paradigm," Computer, volume
16, number 11, November 1983, pp. 30-38.

94. Balzer, Robert, Thomas E. Cheatham, Jr., and Cordell Green,
"Software Technology in the 1990's: Using a New Paradigm,"
Computer, volume 16, number 11, November 1983, pp. 39-46.

95. Dunham, Janet R., and Elizabeth Kruesi, "The Measurement Task
Area," Computer, volume 16, number 11, November 1983, pp. 47-55.

96. Lubbes, 1.O., "The Project Management Task Area," Computer,

volume 16, number 11, November 1983, pp. 56-66.

97. Oglesby, Charles E., and Joseph E. Urban, "The Human Resources
Task Area," Computer, volume 16, number 11, November 1983, pp.
65-70.

31

VS~ ~ A w

98. Frank, Geoffrey A., Samuel T. Redwine, Jr., and Stephen L.
Squires, "The Systems Task Area," Computer, volume 16, number 11,
November 1983, pp. 71-77.

99. Batz, Joseph C., Paul M. Cohen, Samuel T. Redwine, Jr., and
John R. Rice, "The Application-Specific Task Area," Computer,
volume 16, number 11, November 1983, pp. 78-85.

100.Kruesi, Elizabeth, "The Human Engineering Task Area,"
Computer, volume 16, number 11, November 1983, pp. 86-96.

101.Marmor-Squires, Ann B., William E. Riddle, George E. Sumrall,
and Jack C. Wileden, "The Support Systems Task Area," Computer,
volume 15, number 11, November 1983, pp. 97-103.

102."Software Technology for Adaptable, Reliable Systems (STARS)
Program Strategy," DoD, 15 March 1983 in Software Technology for

*Adaptable, Reliable Systems (STARS) Program Strategy, 1 April
* 1983.

*103."Software Technology for Adaptable, Reliable Systems (STARS)
Functional Task Area Strategy for Measurement," DoD, 30 March
1983, in Software Technology for Adaptable, Reliable Systems
(STARS) Program Strategy, 1 April 1983.

104."Software Technology for Adaptable, Reliable Systems (STARS)
Functional Task Area Strategy for Human Resources," DoD, 30 March
1983, in Software Technology for Adaptable, Reliable Systems
(STARS) Program Strategy, 1 April 1983.

105."Software Technology for Adaptable, Reliable Systems (STARS)
Functional Task Area Strategy for Project Management," DoD, 30
March 1983, in Software Technology for Adaptable, Reliable Systems
(STARS) Program Strategy, 1 April 1983.

106."Software Technology for Adaptable, Reliable Systems (STARS)
Functional Task Area Strategy for Systems," DoD, 21 April 1983, in
Software Technology for Adaptable, Reliable Systems (STARS)
Program Strategy, I April 1983.

107."Software Technology for Adaptable, Reliable Systems (STARS)
Functional Task Area Strategy for Application Specific," DoD, 30
March 1983, in Software Technology for Adaptable, Reliable Systems
(STARS) Program Strategy, 1 April 1983.

108."Software Technology for Adaptable, Reliable Systems (STARS)
Functional Task Area Strategy for Acquisition," DoD, 30 March
1983, in Software Technology for Adaptable, Reliable Systems
(STARS) Program Strategy, I April 1983.

109."Software Technology for Adaptable, Reliable Systems (STARS)
Functional Task Area Strategy for Human Engineering," DoD, 30
March 1983, in Software Technology for Adaptable, Reliable Systems
(STARS) Program Strategy, 1 April 1983.

32

~ ~ ~. *** . ~ S.~ S. *~ .

11O."Software Technology for Adaptable, Reliable Systems (STARS)
Functional Task Area Strategy for Support Systems," DoD,. 30 March
1983, in Software Technology for Adaptable, Reliable Systems
(STARS) Program Strategy, I April 1983.

Ill. "A Candidate Strategy for the Software Engineering
Institute," March 15, 1983, in Software Technology for Adaptable,
Reliable Systems (STARS) Program Strategy, I April 1983.

112.Strategy for a DoD Software Initiative, DoD, I October 1982.

113.Samuel T. Redwine, Jr., Eric D. Siegel, and Gilbert R.
Berglass, Candidate R&D Thrusts for the Software Technology
Initiative, DoD, Prepared with the Assistance of the MITRE
Corporation, May 1981.

114.Letter to the Honorable Melvin Price, Chairman, Committee on
Armed Services, U.S. House of Representatives from the Honorable
Richard D. DeLauer, Under Secretary of Defense for Research and
Engineering, responding to questions raised by House and Senate
reports on the Department of Defense Appropriations Bill for 1984,
17 September 1984.

115.Computer Technology Forecast and Weapon Systems Impact Study
(COMTEC-2000), 3 volumes, COMTEC 2000 Study Group, HQ Air Force
Systems Command, Technical Rept. 78-03, December 1978 - July 1979.

116.Wegner, P. (editor), Research Directions in Software
Technology, MIT Press, 1979.

117.Arden, B. (editor), What Can Be Automated?, MIT Press, 1980.

118.Software Technology for Adaptable, Reliable Systems (STARS)
Program Summary, Computer Software and Systems Directorate, Deputy
Under Secretary of Defense (Research and Advanced Technology),
September 1984.

119 .0p. Cit. Redwine, Samuel T., Jr. et al, DoD Related Software
Technology Requirements, Practices, and Prospects for the Future,
p. 75.

120.Op Cit. Xdith W. Martin, "The Context of STARS," p. 15.

121.Neumann, Peter G., "Letter from the Editor," Software

Engineering Notes, volume 9, number 5, October 1984, p. 2.

122.Neumann, Peter G., "Letter from the Editor," Software
Engineering Notes, volume 5, number 2, April 1984, p. 6.

123. Methods for Improving Software Quality and Life Cycle Cost,
6 Committee on Methods for Improving Software Quality and Life Cycle

Cost, Air Force Studies Board, Commission on Engineering and

33

Ii

Technical Systems, National Research Council, National Academy
Press, 1985, pp. 5-8.

124. "News- International Report - Japan," Computerworld, May 20,
1985, p. 20.

125. Brian Oakley, Director, Alvey, Presentation given at the
STARS Industry and NSIA STARS Conference, 29 April - 2 May, 1985.

126. Per telephone conversation with Joel Trimble, Computer
Software and Systems Directorate, OUSDRE, DoD, 694-0208.

127. "Council Decision of 11 February 1985 Adopting the 1985 Work
Programme for the European Strategic Programme for Research and
Development in Information Technologies: ESPRIT, Official Journal
of the European Communities, volume 28, L55, February 1985, p. 38.

128. Boehm, Barry, Software Engineering Economics, Prentice-Hall,
1983, p. 644.

129. Bernstein, Lawrence and Yuhas, Christine M., "Blood from
Turnips?", Datamation, January 15, 1985, p. 110.

130. Douville, Anne A., Salasin, John, and Probert, Thomas H.,
The Impact of Ada on COCOMO Cost Estimates as Applied to the World
Wide Military Command and Control (WWMCCS) Information System
(WIS), Institute for Defense Analyses, IDA Paper P-1810, January
1985, pp. S-2 and S-5.

131. Horowitz, Ellis and Munson, John, "An Expansive View of
Reusable Software," IEEE Transactions on Software Engineering,
vol. SE-IO, no. 5, September 1984, p. 478.

132. Brooks, Frederick P., Jr., "The Mythical Man-Month,"
Datamation, December 1974.

133. Nelson, E.A., Management Handbook for the Estimation of
Computer Programming Costs, Report TM-3225, System Development
Corporation.

134. Fagan, M.E., "Design and Code Inspections to Reduce Errors
in Program Development," IBM Systems Journal, vol. 15, no. 3,
1976.

135. Op cit., Horowitz, Ellis and Munson, John, "An Expansive
View of Reusable Software," p. 479.

136. Op cit., Report of the U.S. Air Force Scientific Advisory
Board Ad Hoc Committee on the High Cost and Risk of
Mission-Critical Software, pp. 3-9 - 3-10.

137. 1983 Summer Study on Acquiring Software, Army Science Board,
1983.

34

i

.- . .. ~ .

,¢. , . . . * --. * ; . "V" ' l' K,--" . -- -.. .. --.,.- .,.y,.-*.e

138. STARS Software Technology for Adaptable Reliable Systems,
Defense Industry Briefing, STARS Joint Program Office, April 29,
1985.

139. "What Will We Buy with Fifty-Two Million Dollars in STARS in
FY 1986?," STARS Joint Program Office Answer to Congressional
Question, March 1985. I

1.

140. Department of Defense Computer Technology (Study Annex) A
Report to Congress, Office of the Under Secretary of Defense
Research and Engineering, Washington, DC, January 1984.

141. Foster, Richard N., Strategic Management of Technology,
McKinsey Staff Paper, February 1981.

142. Op cit., A Competitive Assessment of the U.S. Software
Industry, p. 18.

4).

35.

4*j

Distribution List for IDA Paper P.1872

Col. Joe Greene 10 copies
Director, STARS Joint Program Office
1211 Fern SL, C-107
Arlington, VA 22202

Defense Technical Information Center 2 copies
Cameron Station
Alexandria, VA 22314

CSED Review Panel

Dr. Dan Alpert, Director
Center for Advanced Study
University of Illinois
912 W. Illinois Street
Urbana, Illinois 61801

Dr. Barry W. Boehm
TRW Defense Systems Group
MS 2-2304
One Space Park
Redondo Beach, CA 90278

Dr. Ruth Davis
The Pymatuning Group, Inc.
2000 N. 15th Street, Suite 707
Arlington, VA 22201

Dr. Larry E. Druffel
Software Engineering Institute
Shadyside Place
480 South Aiken Av.
Pittsburgh, PA 15231

Dr. C.E. Hutchinson, Dean
Thayer School of Engineering
Dartmouth College
Hanover, NH 03755

Mr. A.J. Jordano
Manager, Systems & Software
Engineering Headquarters
Federal Systems Division
6600 Rockledge Dr.
Bethesda, MD 20817

Mr. Robert K. Lehto
Mainstay
302 Mill St.
Occoquan, VA 22125

Mr. Oliver Selfridge
45 Percy Road
Lexington, MA 02173

Gen. W.Y. Smith, HQ
Mr. Seymour Deitchman, HQMs. Karen Webber, HQ

Dr. Jack Kramer, CSED
Dr. John Salasin, CSED
Dr. Robert Winner, CSED
Ms. Katydean Price, CSED 2 copies
IDA C&D Vault 3 copies

-V

4.

I.

AN

'4

.1

.1*

A

1

U

'p

p~p~.'J.

~wW~U!* ~ - ~

